rotate3d()

Baseline 2022

Newly available

Since March 2022, this feature works across the latest devices and browser versions. This feature might not work in older devices or browsers.

The rotate3d() CSS function defines a transformation that rotates an element around a fixed axis in 3D space, without deforming it. Its result is a <transform-function> data type.

Try it

In 3D space, rotations have three degrees of freedom, which together describe a single axis of rotation. The axis of rotation is defined by an [x, y, z] vector and pass by the origin (as defined by the transform-origin property). If, as specified, the vector is not normalized (i.e., if the sum of the square of its three coordinates is not 1), the user agent will normalize it internally. A non-normalizable vector, such as the null vector, [0, 0, 0], will cause the rotation to be ignored, but without invalidating the whole CSS property.

Note: Unlike rotations in the 2D plane, the composition of 3D rotations is usually not commutative. In other words, the order in which the rotations are applied impacts the result.

Syntax

The amount of rotation created by rotate3d() is specified by three <number>s and one <angle>. The <number>s represent the x-, y-, and z-coordinates of the vector denoting the axis of rotation. The <angle> represents the angle of rotation; if positive, the movement will be clockwise; if negative, it will be counter-clockwise.

css
rotate3d(x, y, z, a)

Values

x

Is a <number> describing the x-coordinate of the vector denoting the axis of rotation which can be a positive or negative number.

y

Is a <number> describing the y-coordinate of the vector denoting the axis of rotation which can be a positive or negative number.

z

Is a <number> describing the z-coordinate of the vector denoting the axis of rotation which can be a positive or negative number.

a

Is an <angle> representing the angle of the rotation. A positive angle denotes a clockwise rotation, a negative angle a counter-clockwise one.

Cartesian coordinates on ℝ^2 This transformation applies to the 3D space and can't be represented on the plane.
Homogeneous coordinates on ℝℙ^2
Cartesian coordinates on ℝ^3 ( 1 + ( 1 cos ( a ) ) ( x 2 1 ) z sin ( a ) + x y ( 1 cos ( a ) ) y sin ( a ) + x z ( 1 cos ( a ) ) z sin ( a ) + x y ( 1 cos ( a ) ) 1 + ( 1 cos ( a ) ) ( y 2 1 ) x sin ( a ) + y z ( 1 cos ( a ) ) y sin ( a ) + x z ( 1 cos ( a ) ) x sin ( a ) + y z ( 1 cos ( a ) ) 1 + ( 1 cos ( a ) ) ( z 2 1 ) ) \begin{pmatrix}1 + (1 - \cos(a))(x^2 - 1) & z\cdot \sin(a) + xy(1 - \cos(a)) & -y\cdot \sin(a) + xz(1 - \cos(a))\\-z\cdot \sin(a) + xy(1 - \cos(a)) & 1 + (1 - \cos(a))(y^2 - 1) & x\cdot \sin(a) + yz(1 - \cos(a))\\y\cdot \sin(a) + xz(1 - \cos(a)) & -x\cdot \sin(a) + yz(1 - \cos(a)) & 1 + (1 - \cos(a))(z^2 - 1)\end{pmatrix}
Homogeneous coordinates on ℝℙ^3 ( 1 + ( 1 cos ( a ) ) ( x 2 1 ) z sin ( a ) + x y ( 1 cos ( a ) ) y sin ( a ) + x z ( 1 cos ( a ) ) 0 z sin ( a ) + x y ( 1 cos ( a ) ) 1 + ( 1 cos ( a ) ) ( y 2 1 ) x sin ( a ) + y z ( 1 cos ( a ) ) 0 y sin ( a ) + x z ( 1 cos ( a ) ) x sin ( a ) + y z ( 1 cos ( a ) ) 1 + ( 1 cos ( a ) ) ( z 2 1 ) 0 0 0 0 1 ) \begin{pmatrix}1 + (1 - \cos(a))(x^2 - 1) & z\cdot \sin(a) + xy(1 - \cos(a)) & -y\cdot \sin(a) + xz(1 - \cos(a)) & 0\\-z\cdot \sin(a) + xy(1 - \cos(a)) & 1 + (1 - \cos(a))(y^2 - 1) & x\cdot \sin(a) + yz(1 - \cos(a)) & 0\\y\cdot \sin(a) + xz(1 - \cos(a)) & -x\cdot \sin(a) + yz(1 - \cos(a)) & 1 + (1 - \cos(a))(z^2 - 1) & 0\\0 & 0 & 0 & 1\end{pmatrix}

Examples

Rotating on the y-axis

HTML

html
<div>Normal</div>
<div class="rotated">Rotated</div>

CSS

css
body {
  perspective: 800px;
}

div {
  width: 80px;
  height: 80px;
  background-color: skyblue;
}

.rotated {
  transform: rotate3d(0, 1, 0, 60deg);
  background-color: pink;
}

Result

Rotating on a custom axis

HTML

html
<div>Normal</div>
<div class="rotated">Rotated</div>

CSS

css
body {
  perspective: 800px;
}

div {
  width: 80px;
  height: 80px;
  background-color: skyblue;
}

.rotated {
  transform: rotate3d(1, 2, -1, 192deg);
  background-color: pink;
}

Result

Specifications

Specification
CSS Transforms Module Level 2
# funcdef-rotate3d

Browser compatibility

BCD tables only load in the browser

See also